IoU

numpy

PythonのnumpyでNMSを高速に演算する(20倍高速?)

重複した矩形を統合するアルゴリズムNMS (Non-Maximum Suppression)を、numpyで高速に計算する方法を紹介します。numpyを使わずpythonリスト(list)を使用する実装と比べて約20倍に高速化できました。
numpy

numpyを使って複数の矩形のIoUを一度に高速に計算する

pythonのnumpyライブラリを使って、1つの矩形と複数の矩形とのIoUを一度に高速に計算する方法を紹介します。計算時間の計測結果も記載し、1つずつIoUを計算した場合に比べてどのくらい高速化できるのか比較も行います。
IoU

pythonでSoft-NMSを実装する(2)Soft-NMS適用例

Soft-NMS(Soft Non-Maximum Suppression)は、SSDやYOLOといった物体検出AIの後処理として使用されるNMSの改良型アルゴリズムです。以前紹介したSoft-NMSサンプルコードの適用例をこの記事で紹介します。
IoU

pythonで2つの矩形(長方形)のGIoUを計算する

pythonでGIoU (Generalized Intersection over Union)の計算方法を実装する方法を紹介します。GIoUは従来のIoUを一般化した概念で、IoUは物体検出AIで出力される複数の矩形の重なり具合を表した指標です。
IoU

pythonでNMSを実装し、複数の矩形をマージする

pythonでNMS (Non-Maximum Suppression)を実装する方法を紹介します。NMSはSSDやYOLOといった物体検出AIの後処理として使用されるアルゴリズムです。たくさんの矩形をマージしてすっきりさせるアルゴリズムがNMSです。
IoU

pythonで2つの矩形(長方形)のIoUを計算する

pythonでIoU (Intersection of Union)の計算方法を実装する方法を紹介します。IoUはSSDやYOLOといった物体検出AIを理解する上で重要な概念で、物体検出AIで出力される複数の矩形の重なり具合を表す定量的な指標です。